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The transfer-matrix method is applied to quasi-one-dimensional disordered media described by a one-
dimensional tight-binding Hamiltonian with long-range random interactions. We investigate the scaling prop-
erties of the whole Lyapunov spectrum in the limit of the interaction rangeb tending to infinity. Two different
energy dependencies are found around the maximum and the minimum Lyapunov exponents. Moreover, a
singular behavior in the lower part of the Lyapunov spectrum is found at the band edge. Finally, scaling
properties of the fluctuations are also analyzed.@S1063-651X~96!51406-6#

PACS number~s!: 05.45.1b, 71.55.Jv

Lyapunov exponents represent a powerful tool for the in-
vestigation of chaotic properties in nonlinear dynamical sys-
tems and of localization properties in disordered systems. In
the former case, one is interested in the evolution in tangent
space, while in the latter, the spatial structure of the eigen-
functions is studied by means of a transfer-matrix approach.

While many results are available in low-dimensional
spaces@i.e., strange attractors and strictly one-dimensional
~1D! disordered systems#, much less clear is the situation in
spatially extended dynamical systems or 2D-3D disordered
systems. In that case, the concept of Lyapunov spectrum is
introduced and its scaling properties are investigated@1,2#.
Yet another class of disordered systems which require con-
sidering high-rank matrices is that of quasi-1D or 1D sys-
tems with long-range hopping. The simplest and general
model in this class is represented by the Schro¨dinger equa-
tion with interactions described by band random matrices
~BRMs!. This ensemble is defined as the set of real symmet-
ric matrices the entries of which are independent Gaussian
variables with zero average and variances2511dn,m
(dn,m is the Kronecker symbol! if un2mu<b and zero oth-
erwise. The parameterb defines the hopping range between
neighboring sites and, in the quasi-1D interpretation, is the
number of transverse channels along a thin wire.

Extensive numerical@3# and analytical@4# studies allowed
clarifying the statistical properties of the eigenstates. In all
the above studies, the interest was concentrated only on the
minimun Lyapunov exponent although it is by now well un-
derstood that quantum transport properties in disordered sys-
tems involve also the other Lyapunov exponents@2#. In this
paper, by following a transfer-matrix approach, we study the
structure of the whole Lyapunov spectrum showing that it
approaches an asymptotic shape asb→`. Two different en-
ergy dependencies are found for the upper and for the lower
part of the spectrum, respectively. Furthermore, we numeri-
cally show the existence of an anomalous scaling at the band
edge of the spectrum of the Schro¨dinger operator. Finally,
we study the scaling behavior of the fluctuations of the
Lyapunov exponents.

Our starting point is the time-dependent Schro¨dinger
equation

i
dcn~ t !

dt
5 (

m5n2b

n1b

Hn,mcm , ~1!

written in dimensionless units. The variablecn(t) is the
probability amplitude for an electron to be at siten, while
Hn,m is a symmetric BRM. The eigenvalues can be obtained
by substituting the assumptioncn(t)5exp(2iEt)cn in Eq. ~1!
and solving the resulting equation forcn1b ,

cn1b5
1

Hn,n1b
S Ecn2 (

m5n2b

n1b21

Hn,mcmD . ~2!

By defining xn( i )[cn1b2 i , the above equation can be re-
casted in the form of a 2b-dimensional linear mapTn ,

xn11~1!5
1

Hn,n1b
S Exn~b!2(

j51

2b

Hn,n1b2 j xn~ j !D ,
xn11~ j !5xn~ j21! 1, j<2b. ~3!

Recursive relation~3! is characterized by 2b Lyapunov ex-
ponents. Let us denote withl1(n,n).l2(n,n).•••
.l i(n,n).•••.l2b(n,n) the effective ~finite-time!
Lyapunov exponents@5,6# computed over a numbern of
iterations at energyE5nAb. Here,n denotes the rescaled
energy, the density of which is known to follow the semi-
circle law, i.e.,r(n)5(82n2)b2/4p @7#.

In analogy with the 2D Anderson problem on a stripe of
width b, we deal with 2b32b matrices; however, here, the
single matrixTn is not symplectic and the determinant is not
even equal to 1 but to (21)2b11(2Hb11,1/Hb11,2b11).
However, statistical invariance of the disorder under space-
reversal guarantees that the product of infinitely many matri-
ces preserves volumes and ensures the symmetric structure
of Lyapunov spectra typical of the symplectic ensemble.
More precisely, the Lyapunov exponents are arranged inb
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pairs @l i(n)52l2b2 i11(n)#. For this reason, in what fol-
lows we always report only the positive exponents.

A further analogy exists between Eq.~2! and the evolu-
tion equation in tangent space for dynamical systems with
delayed feedback@8#, where the delay time plays a role
equivalent tob in controlling the ‘‘range’’ of interactions.
These analogies suggest the following scaling relations for
the Lyapunov spectrum:

l i~n!5L~x,n!/b, x5~ i21/2!/b, ~4!

where i51, . . . ,b and the correction term 1/2 is added to
guarantee that the spectrum is symmetric aroundx51, inde-
pendently ofb @9#.

The numerical results for three different energy densities,
n50, 1.8, andne5A8 ~band edge!, are reported in Fig. 1
~curvesa, b, andc, respectively! by referring to the variable
Lx to get rid of the singularity aroundx50. The points
corresponding to the same energy but different values ofb
fall onto the same smooth curve with a good accuracy@10#,
confirming the scaling hypothesis. The divergence of
L(0,n) follows from the existence of an exponent which
remains finite forb→`. This is related to the presence of
‘‘short-time’’ interactions@8#, i.e., the explicit dependence of
cn11 on cn , as it can be seen from Eq.~2!.

An additional interesting feature of the Lyapunov spec-
trum that we found is thatL(x,n) is independent ofn at
small x values~i.e., largeL) even for energies outside the
semicircle as clearly demostrated in Fig. 1, where curve
(d) corresponds ton54. Our data indicate that this universal
scaling behavior of the upper part of the spectrum holds up
to x.0.1. In particular, the value of the maximum
Lyapunov exponent is equal to 0.693 . . . . The indepen-
dency of the energy can be understood with a self-
consistency argument. From Eq.~2!, if we assume that
cn.enl1 with l1 independent ofb, it is obvious that the
energy dependence is asymptotically (b→`) negligible as it

arises from a terme2bl1 times smaller than the leading term
@the one on the left hand side of Eq.~2!#. Thus, in the limit
b→`, the maximum Lyapunov exponent is expected to be
the same as that for the recursive relation

cn.
1

Hj ,n
(

m5 j11

n21

Hj ,mcm , ~5!

where all matrix elements are independent, identically dis-
tributed variables. An analytical estimate forl1 can be ob-
tained from the following simple argument. Each coefficient
Hj ,m /Hj ,n is equally likely larger and smaller than 1 in ab-
solute value, so that we can assume that it is equal to 1 on the
average. By substituting this assumption in Eq.~5! and sum-
ming the corresponding series, one finds that forn→`,
l15 ln2. This result is astonishingly close to our numerical
findings although we have neglected both fluctuations of the
coefficients and interference effects due to the random sign
of each ratioHj ,m /Hj ,n .

The localization lengthl`(n) of the eigenfunction of en-
ergy n is known to be the inverse of the minimum positive
Lyapunov exponentlmin(n) @11#. The latter quantity is ob-
tained by settingx5121/(2b), i.e., i5b, in the spectrum
L(x). SinceL(1)50 for all energy values in the spectrum
~this relation expresses the analytical result that the localiza-
tion length diverges asb2 for b→`) the localization length
can be obtained by linearizingL aroundx51 @see also re-
lation ~4!#,

l`~n!522b2/L8~1,n!. ~6!

A necessary condition for Eq.~6! to be correct is that the
leading finite band-size (b) correction arises from the dis-
creteness of thex values. This is nota priori obvious, since
the rate of convergence of the Lyapunov spectrum to its as-
ymptotic shape is a problem that has never been, to our
knowledge, quantitatively investigated. In our case, the con-
vergence turns out to be very fast since the numerical analy-
sis reveals a perfect agreement with the theoretical results
obtained in@7#, where it was rigorously proved that the lo-
calization length isl`(n)5b2(82n2)/6.

Moreover, our results suggest, at the band edge, a singular
behavior of the spectrum aroundx51,

L~x,ne!.~12x!b. ~7!

A slow dependence onb prevents a direct accurate estimate
of the critical exponentb. Such a difficulty has been circum-
vented with an appropriate conjecture about the main correc-
tion term to the leading behavior expressed by Eq.~7!. Our
ansatz consists in assuming thatL(x,ne) is an analytic func-
tion of (12x)b for someb value, i.e., that the finite size
corrections are proportional to (12x)2b. Accordingly, b
can be determined from a quadratic fit of the spectral tail.
More precisely, since we know thatL(1)50, the value of
b is obtained by imposing that the fitted spectrum crosses 0
at x51. The quality of the fit strongly supports our ansatz
and yieldsb50.3460.01. The numerical results are re-
ported in Fig. 2.

A scaling behavior with a similar exponentb51/3 has
been already observed in two other physical problems:~i! the

FIG. 1. Lyapunov spectra for energy densitiesn50, 1.8,ne , 4
~curves a, b, c, and d, respectively!. Circles, diamonds, and
crosses correspond tob580, 100, and 200, respectively. The super-
position of the curves for differentb values strongly suggests the
existence of a limit distribution. The curve forn54 is reported only
for the sake of comparison, the energy being out of the spectrum.
All curves start from Lx.0.346, value corresponding to
l1.0.693@from Eq. ~4!, l152L(1/2b)].
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spatial Lyapunov spectrum for a chain of coupled logistic
maps@9#; ~ii ! the standard temporal Lyapunov spectrum in
the 3D evolution of molecules interacting via a Lennard-
Jones-type potential@12#. The three systems,a priori, share
only the symmetry of the spectrum, a property which follows
from the reversibility along the~pseudo!time axis. Therefore,
it is very likely that a universal mechanism underlies this
phenomenon. The anomalous behavior of the Lyapunov ex-
ponents arises at the band edge of the spectrum, so that it is
related to the structure of the ground state, i.e., to zero-
temperature statistical properties.

In the study of localization properties in BRMs, remark-
able scaling relations have been found@3,4#, which show that
many properties can be traced back to the density of states.
Therefore, it appears natural to ask whether the shape of the
Lyapunov spectrum can be scaled in a uniform way for dif-
ferent energy values. However, our study has revealed the
existence of a sort of ‘‘phase transition’’ separating two re-
gimes characterized by different scaling properties. The
lower part of the spectrum is well described by the following
ansatz~see Fig. 3!;

L~x,n!5
b

Al`~n!
f S b~12x!

Al`~n!
D ~8!

which is in the spirit of previous studies@3,4#. This is the
most important part for what concerns applications to solid
state physics: localization and conductance in the corre-
sponding disordered system are mainly determined from the
properties of the open channels, i.e., small Lyapunov expo-
nents. Notice, for instance, that by assuming a linear depen-
dence off (x) aroundx50, as suggested from Fig. 3, Eq.~8!
reduces to relation~6! for the localization length. However,
the scaling region becomes increasingly small when the band
edge is approached. This is consistent with the singular be-
havior observed therein.

The second scaling regime occurs forx,0.1 ~see Fig. 1!,
where no energy dependence is observed at all. The above
two findings suggest altogether that, at variance with what

was found for the 2D Anderson problem@2#, a single param-
eter scaling does not hold for the whole spectrum.

The last problem addressed in this paper concerns sample-
to-sample fluctuations of the effective Lyapunov exponents
l i(n,n). In the context of low-dimensional strange attrac-
tors, this approach leads to the definition of the generalized
Lyapunov exponents@5#. It is interesting to investigate the
scaling behavior of such fluctuations in high-dimensional
systems in connection either with space-time chaos or con-
ductance fluctuations in solid state physics. Here, we limit
ourselves to compute the variance of the distribution, which,
in low-dimensional cases, is known to be inversely propor-
tional to n. Thus, by recalling the scaling properties of the
Lyapunov spectrum@Eq. ~4!#, it is natural to conjecture that
the varianceVi(n,n) of the i th effective Lyapunov exponent
scales as

Vi~n,n!5
s2~x,n!

nb2
. ~9!

FIG. 2. The Lyapunov spectrum in the vicinity ofx51 for the
energy at the band edge. Circles, squares, and triangles correspond
to b5200, 400, and 600, respectively. The solid line is the result of
a quadratic fitting as a function of (12x)b with b50.34.

FIG. 3. Rescaled Lyapunov spectra for energiesn50, 1, 1.8, 2,
and 2.2~curvesa, b, c, d, ande respectively!. Circles, squares,
stars, and triangles correspond tob580, 100, 200, and 300, respec-
tively. The good overlap indicates the existence of a scaling behav-
ior in the region of small Lyapunov exponents for a wide interval of
energies.

FIG. 4. Scaling ofs(x,n) for energiesn50, 1.8, andne ~curves
a, b, andc, respectively!. Stars, circles, and squares correspond to
n5150, 200, and 300, respectively. Notice the divergence occur-
ring at band edge.
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The good overlap of the curves reported in Fig. 4 confirms
the scaling dependence conjectured in Eq.~9!. At variance
with L, which goes to 0 forx→1, the scaled standard de-
viation s(x,n) remains finite forx→1. This implies that
fluctuations play a prominent role in determining the local-
ization properties of the eigenstates of the Schro¨dinger op-
erator~1! and extends the previous findings for just the mini-
mum Lyapunov exponent@13#. The larger fluctuations
observed at the band edge wheresx seems to diverge~see
curvec in Fig. 4! somehow compensate the slower conver-
gence to zero of the Lyapunov spectrum.

In conclusion, we have investigated the Lyapunov spectra
of the Hamiltonian map~2! describing quasi-1D and 1D dis-

ordered systems with long-range interactions. We discovered
remarkable scaling properties, which appear to be universal
@9,12#. Furthermore, we have found two different scalings
for the upper and the lower part of the spectrum. This may
indicate that local characteristics of the core of eigenstates
have different scaling properties in comparison to global
characteristics of the shape of the eigenstates. At the end we
have investigated the fluctuations of the whole spectrum
finding an interesting scaling behavior.

F.M.I. participated in the INFM-FORUM in Firenze; he
also would like to thank the Research Center of Crete for its
hospitality. One of us~T.K! would like to acknowledge G. P.
Tsironis and C. Soukoulis for useful discussions.

@1# R. Livi, A. Politi, and S. Ruffo, J. Phys. A19, 2033~1986!.
@2# J. L. Pichard and G. Andre´, Europhys. Lett.2, 477 ~1986!.
@3# G. Casati, I. Guarneri, F. M. Izrailev, and R. Scharf, Phys.

Rev. Lett. 64, 5 ~1990!; G. Casati, L. Molinari, and F. M.
Izrailev, ibid. 64, 16 ~1990!; G. Casati, F. M. Izrailev, and L.
Molinari, J. Phys. A24, 4755~1991!.

@4# Y. F. Fyodorov and A. D. Mirlin, Phys. Rev. Lett.69, 1093
~1992!; 71, 412 ~1993!; A. D. Mirlin and Y. F. Fyodorov, J.
Phys. A26, L551 ~1993!; Phys. Rev. Lett.72, 526 ~1993!.

@5# G. Paladin and A. Vulpiani, Phys. Rep.156, 147 ~1987!.
@6# Notice that our notations, borrowed from the dynamical-

systems community, clash with those adopted in condensed
matter physics, wherel is used to denote the inverse of the
Lypaunov exponent, i.e., the localizationl length.

@7# Y. F. Fyodorovand A. D. Mirlin, Phys. Rev. Lett.67, 405
~1991!.

@8# D. J. Farmer, Physica4D, 366~1982!; S. Lepri, G. Giacomelli,
A. Politi, and F.T. Arecchi, Physica70D, 235 ~1993!.

@9# G. Giacomelli and A. Politi, Europhys. Lett.15, 387 ~1991!.
@10# In all simulations, the numerical error is less than the symbol

size: it is mainly due to temporal fluctuations rather than to a
dependence on the disorder realizaton.

@11# A. MacKinnon and B. Kramer, Phys. Rev. Lett.47, 1546
~1981!.

@12# H. Posch and W. Hoover, Phys. Rev. A38, 473 ~1988!.
@13# E. N. Economou,Green’s Functions in Quantum Physics,

Springer Series in Solid State Physics Vol. 7~Springer-Verlag,
Berlin, 1979!.

R5556 53T. KOTTOS, A. POLITI, F. M. IZRAILEV, AND S. RUFFO


